Bayesian variable selection using an adaptive powered correlation prior.

نویسندگان

  • Arun Krishna
  • Howard D Bondell
  • Sujit K Ghosh
چکیده

The problem of selecting the correct subset of predictors within a linear model has received much attention in recent literature. Within the Bayesian framework, a popular choice of prior has been Zellner's g-prior which is based on the inverse of empirical covariance matrix of the predictors. An extension of the Zellner's prior is proposed in this article which allow for a power parameter on the empirical covariance of the predictors. The power parameter helps control the degree to which correlated predictors are smoothed towards or away from one another. In addition, the empirical covariance of the predictors is used to obtain suitable priors over model space. In this manner, the power parameter also helps to determine whether models containing highly collinear predictors are preferred or avoided. The proposed power parameter can be chosen via an empirical Bayes method which leads to a data adaptive choice of prior. Simulation studies and a real data example are presented to show how the power parameter is well determined from the degree of cross-correlation within predictors. The proposed modification compares favorably to the standard use of Zellner's prior and an intrinsic prior in these examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

A Review of Bayesian Variable Selection Methods: What, How and Which

The selection of variables in regression problems has occupied the minds of many statisticians. Several Bayesian variable selection methods have been developed, and we concentrate on the following methods: Kuo & Mallick, Gibbs Variable Selection (GVS), Stochastic Search Variable Selection (SSVS), adaptive shrinkage with Jeffreys’ prior or a Laplacian prior, and reversible jump MCMC. We review t...

متن کامل

Bayesian recursive variable selection

In this work we introduce a new model space prior for Bayesian variable selection in linear regression. This prior is designed based on a recursive constructive procedure that randomly generates models by including variables in a stagewise fashion. We provide a recipe for carrying out Bayesian variable selection and model averaging using this prior, and show that it possesses several desirable ...

متن کامل

Estimation of parameter of proportion in Binomial Distribution Using Adjusted Prior Distribution

Historically, various methods were suggested for the estimation of Bernoulli and Binomial distributions parameter. One of the suggested methods is the Bayesian method, which is based on employing prior distribution. Their sound selection on parameter space play a crucial role in reducing posterior Bayesian estimator error. At times, large scale of the parametric changes on parameter space bring...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of statistical planning and inference

دوره 139 8  شماره 

صفحات  -

تاریخ انتشار 2009